

About me

I am a WordPress and PHP specialist

I started my first projects in the late 90s.

I worked on projects with millions of page
impressions. As technical lead I developed
custom themes, plugins, optimized performance
and planned coming features.

I am a frequent speaker at WordPress events,
and founder and co-host of the Meetup in
Dortmund.

Currently I work as Senior Web Developer,
WordPress Expert and DX Engineer at Coding
Pioneers in Iserlohn.

https://www.linkedin.com/in/christoph-daum/

https://www.linkedin.com/in/christoph-daum/

● He mostly worked alone
● He is confident of his skills
● He likes how WordPress is coded

Meet Sheldon
Hi, I’m Sheldon

Q: Coding Standards

Applying coding standards
doesn’t improve my code, it’s just a

waste of time.

Q: Coding Standards

And don’t forget.
“Code is Poetry”!

Coding is not an Art - Coding is a Craft

● Coding Standards help to work together
● Unified Styling (Usages of spaces, naming conventions etc.)
● Navigating through code will become easier
● Technical sniffs

○ Escaping
○ Proper preparation for i18n
○ Warning that meta queries are slow

A: Coding Standards

Q: PHPDoc

The code is documentation
enough, the Coding Standards want

me to add PHPDoc. That is not
worth the time.

● AI reads PHPDoc and thus will provide better suggestions
● Your IDE reads the Docs and your auto complete will be better
● Describe what a function or class should do, this helps finding bugs
● Can help others to understand how a function is used
● Can show when a function was added, changed and more

A: PHPDoc

Q: Commented out code

I will remember
why I left the commented out code

there.

● Always write when and why code was commented out
● If you forget to remove it, it will be kept forever
● In most cases, your git history is all you need
● Better write a comment with a hint to your git repository

A: Commented out code

Q: Professional Comments

Everyone likes a good
pun or banter in a comment.

I always speak my mind…
or rather write it.

Q: Professional Comments

And it’s just a private project, no
one will ever read my comments

● Build a habit of writing professional comments
● Comments can be read by colleagues, clients, future employers
● Ranting, insulting or other offensive comments can cost your reputation
● Comments are not for venting, insulting and more
● If a comment is on a public github repository, everyone can read it

A: Professional Comments

// I'm very sorry. It had to be done. Quick, hard and dirty,
// that's how you like it, isn't it...

Found in the JavaScript of an actual project

Q: Main Branch vs feature branches

Working directly on
the main branch is faster and easier.
Feature branches are overhead and I

don’t have enough time
for that.

A: Main Branch vs feature branches

Will cause problems if…

● you work with multiple people
● you work on several features at once
● you want to do major refactoring is basically impossible
● you want to have multiple stages of your website

Q: Pull Request and Code Review

Ok, you have a point, but
I will just merge my changes into
main once they are ready. Doing

code review is still too slow.

A: Pull Request and Code Review

● Code Review is a main staple in software development
● Share and learn from each others
● 4 eyes principle for code
● Prevent logic errors
● Prevent Debug Code from being merged
● Fix Typos
● Gain confidence before deploying

Q: Pair Programming

If a second developer
should look at my code, I heard

about pair programming.
What about that?

A: Pair Programming

● Pair Programming CAN replace Code Review - depending on your
teams rules

● for sharing knowledge
● for debugging
● for developing ideas
● for software architecture

Q: PHP7&8 Type Hints

One of the strengths of
PHP is being type less. I don’t need

to add types, that just slows
me down.

● Strict Typing helps to make your code more robust and predictable
● Errors will occur visibly instead of being weird side effects
● Can improve security
● Clear contract what is delivered and what is received
● Improves readability
● Can replace validation and sanitization
● Simplifies testing scenarios

A: PHP7&8 Type Hints

Q: Strict comparisons and conditions

Checking if a value is
truthy or falsy is enough, strict

comparisons are tedious.

Strict comparison in conditions will prevent unpredicted behaviour

Instead of checking if something is truthy, you can check if contains the right type.

A: Strict comparisons and conditions

if ($post) {
 echo $post->post_title;
}

if ($post instanceof \WP_Post) {
 echo $post->post_title;
}

Can result in a fatal error if $post is WP_Error

Q: DRY - Don’t repeat yourself

Copy and paste is faster
than refactoring.

And I will just do it once!
I promise! Really!!

Copy-pasting creates maintenance nightmares.

A: DRY - Don’t repeat yourself

✅ Extract repeated logic

✅ Create reusable functions

✅ Share common validation

✅ Use inheritance/composition wisely

❌ Don't copy-paste code

❌ Don't repeat validation

❌ Don't duplicate queries

❌ Don't over-abstract simple logic

❌ Don't create unnecessary
dependencies

Q: KISS - Keep it simple, stupid

I want to show my skills,
it won’t hurt if I overengineer

this prototype.
The client will love it.

✅ Choose simple solutions

✅ Avoid unnecessary complexity

✅ Write readable code

✅ Use familiar patterns

✅ Question every abstraction

A: KISS - Keep it simple stupid

❌ Don't use design patterns for
simple tasks

❌ Don't add layers without reason

❌ Don't make simple things
complicated

❌ Don't prioritize "clever" over
"clear

Q: YAGNI - You ain’t gonna need it

If my plugin is a success,
I will release this to TYPO3, Joomla
and Drupal. I’ll directly prepare my

code for this.

✅ Build what you need NOW

✅ Add features WHEN requested

✅ Keep it simple

✅ Refactor when pattern emerges

A: YAGNI - You ain’t gonna need it

❌ Don't build "just in case"

❌ Don't over-engineer

❌ Don't add speculative features

❌ Don't create unused abstractions

❌ Don't skip all planning

Q: Software Design Principles (SOLID)

Ok, but a function or class
that will do everything is easier to

read and you can follow
the code.

● Single Responsibility
● Open-closed principle
● Liskov substitution principle
● Interface segregation principle
● Dependency inversion principle

A: Software Design Principles (SOLID)

https://en.wikipedia.org/wiki/SOLID

Each class and function should only have one responsibility

● Maintainability - Simple and well-defined code is easier to understand and
modify

● Testability - It’s easier to test, especially with Unit Test
● Flexibility - Changes to one part won’t have side effects to other parts

A: Single Responsibility

Code should be open for extension but closed for modification

● Extensibility - new features can be added without modifying existing code
● Stability - reduces the risk of introducing bugs when making changes
● Flexibility - adapts to changing requirements more easily

A: Open-closed principle

Code must be able to use objects of derived classes without knowing it

● Polymorphism - Making code more flexible and reusable.
● Reliability - Subclasses adhere to the contract defined by the superclass.
● Predictability - Using the object of a subclass won't break the program

A: Liskov substitution principle

Code should not depend upon interfaces that it does not use.

● Decoupling - Reduce dependencies between classes, make the code more
modular and maintainable.

● Flexibility - Allow for more targeted implementations of interfaces.
● Avoids unnecessary dependencies - Don't have to depend on methods you

don't use.

A: Interface segregation principle

Depend upon abstractions, not concretes.

● Loose coupling - Reduce dependencies between modules, make the code
more flexible and easier to test

● Flexibility - Enable changes to implementations without affecting clients
● Maintainability - Makes code easier to understand and modify

A: Dependency inversion principle

Q: Testable code

Ok, ok.
But why write testable code. I don’t

do test driven development and I
need to ship these changes.

Testable code or code following SOLID, is also good without test

● Simple functions are easy to understand
● Bugs are easy to find or prevent
● Side effects are rare
● Tests can be added at a later point

A: Testable code

Q: A11y, I18n, SEO and more

What about A11y, I18n,
 and SEO, do they benefit from code

quality, too?

In short words

A: A11y, I18n, SEO and more

YES
But I’m out of time, so I
can’t cover it today

Share knowledge and learn from peers

Ok, I think I learned a
thing or two…

maybe I should share it,
like you do…

● Sharing and learning is important
● Writing good code will also help others to learn
● Doing Code Review does improve your own skills and your peer’s skills

But I have one more thing…

Share knowledge and learn from peers

I am Sheldon… we all are.

Static Code Analysis tool for PhpStorm (sorry VS Code People)

Offers suggestions for

● Performance
● Simplification
● Modernization
● Security

Bonus Tip 1: PHP Inspections EA Extended

WordPress and Composer do work together

For themes and Plugins

● Autoloader
● Packages
● Coding Standards
● And much more

For Projects

● Bedrock https://roots.io/bedrock/

Bonus Tip 2: Composer & Autoloader

Minecraft?

https://roots.io/bedrock/

– Anthony Burill

”

Thank you for your attention

Slides at:
c13s.com/wordcamp

Further examples:
github.com/apermo

https://www.linkedin.com/in/christoph-daum/

https://www.linkedin.com/in/christoph-daum/

